导语
分享内容简介
分享内容简介
本次读书会将对近期有关因果涌现和脑的三篇主要工作进行梳理,其内容与因果涌现在脑网络中的应用大致存在由弱到强的递进关系,分别是:
-
单纯地从信息分解角度理解脑功能之间的协同和冗余(Varley, Luppi);
-
从信息分解角度定义因果涌现框架并讨论 mind-matter relationship(Rosas);
-
最后希望能够引入本期读书会讨论最多的 Erik Hoel 框架在脑网络的可能应用,讨论张江老师在神经信息压缩器(NIS)基础上进一步延展出来的 NIS+ 中的脑实验结果。
内容大纲
内容大纲
-
什么是涌现
-
哲学定义
-
强涌现和弱涌现
-
协同核(Varley)
-
信息论简介 -
信息分解 -
信息分解在脑数据里的应用
-
从协同到涌现(Rosas)
-
整合信息分解 -
脑数据案例
-
另一种涌现框架(Hoel)
-
Hoel 的因果涌现框架
核心概念
核心概念
-
强涌现和弱涌现 Strong & Weak Emergence
-
协同核 Synergetic Core
-
信息分解 Information Decomposition
-
整合信息分解 Integrated Information Decomposition
-
因果涌现 Causal Emergence
主讲人简介
主讲人简介
直播信息
直播信息
参考文献
参考文献
此处参考文献[7-8]出自西班牙巴塞罗那大学 Oriol Artime 和意大利帕多瓦大学 Manlio De Domenico 两位复杂系统研究者编辑的关于涌现现象的特刊,“复杂物理和社会技术系统中的涌现现象:从细胞到社会”(Emergent phenomena in complex physical and socio-technical systems: from cells to societies)。该主题特刊包含来自 Stuart Kauffman、Anil K. Seth、Hector Zenil、Thomas F. Varley、Erik Hoel、Fernando E. Rosas 等学者的16篇文章,从跨学科视角探讨涌现的概念、复杂科学的重要里程碑。此前集智俱乐部曾组织翻译特刊的介绍引言和其中的文章,感兴趣的读者可以深入阅读:
-
特刊引言《从生命起源到流行病:复杂系统中的多尺度涌现现象》
-
论文[7]解读:《从微观到宏观:涌现的实质是信息转换?》
张江、崔鹏 & Zenil 联合发起:
Entropy 因果与复杂系统特刊征稿倒计时
如何从一个复杂系统的原始数据中发现错综复杂的因果结构并识别因果涌现?如何利用因果机制推断系统未来的状态和演化?机器学习、互信息分解、因果推断等新兴技术将为我们提供新的解决方案。由北京师范大学系统科学学院张江教授与清华大学计算机科学学院崔鹏副教授合作在Entropy杂志发起的Causality and Complex Systems特刊正在征稿中,欢迎对相关话题感兴趣的研究者投稿,会议文章也可投稿。
因果涌现读书会
跨尺度、跨层次的涌现是复杂系统研究的关键问题,生命起源和意识起源这两座仰之弥高的大山是其代表。而因果涌现理论、机器学习重整化技术、信息论或信息分解等近年来新兴的理论与工具,有望破解复杂系统的涌现规律。而新兴的因果表征学习、量子因果等领域也将为因果涌现研究注入新鲜血液。
集智俱乐部因果涌现读书会目前已经进行了两季。第一季读书会系统地梳理了因果涌现的概念,以及它与Sloopy Model、复杂性阈值、自指等概念之间的联系,也探讨了因果涌现理论在复杂网络、机器学习中的应用。参看:因果涌现读书会启动:连接因果、涌现与自指——跨尺度动力学与因果规律的探索。第二季读书会探讨了涌现、因果科学和机器学习三大主题的融合,包括信息论拓展、因果涌现理论、因果表示学习、多尺度机器学习动力学建模。参看:因果、涌现与机器学习:因果涌现读书会第二季启动。
此次因果涌现读书会第三季,将进一步围绕因果涌现的核心问题「因果涌现的定义」以及「因果涌现的辨识」进行深入学习和讨论,对 Erik Hoel 提出的 Causal Emergence,Causal Geometry 等因果涌现的核心理论进行探讨和剖析,并详细梳理其中涉及到的方法论,包括从动力学约简、隐空间动力学学习等其他领域中学习和借鉴相关的研究思路,最后探讨因果涌现的应用,包括基于生物网络、脑网络或者涌现探测等问题展开扩展,发掘更多的实际应用场景。因果涌现读书会第四季正在筹备中,将重点讨论和梳理信息分解与整合信息论相关研究。
因果涌现社区聚集了500+成员,积累了大量论文解读资料。欢迎感兴趣的朋友报名,加入因果涌现社区,并解锁对应录播权限。
本季读书会详情与报名方式请参考:
因果涌现读书会第三季启动:深入多尺度复杂系统核心,探索因果涌现理论应用