Vision Transformer (base-sized model, patch size 8) trained using DINO
Vision Transformer (ViT) model trained using the DINO method. It was introduced in the paper Emerging Properties in Self-Supervised Vision Transformers by Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, Armand Joulin and first released in this repository.
Disclaimer: The team releasing DINO did not write a model card for this model so this model card has been written by the Hugging Face team.
Model description
The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-1k, at a resolution of 224×224 pixels.
Images are presented to the model as a sequence of fixed-size patches (resolution 8×8), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.
Note that this model does not include any fine-tuned heads.
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.
Intended uses & limitations
You can use the raw model for image classification. See the model hub to look for
fine-tuned versions on a task that interests you.
How to use
Here is how to use this model:
from transformers import ViTFeatureExtractor, ViTModel
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = ViTFeatureExtractor.from_pretrained('facebook/dino-vitb8')
model = ViTModel.from_pretrained('facebook/dino-vitb8')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
BibTeX entry and citation info
@article{DBLP:journals/corr/abs-2104-14294,
author = {Mathilde Caron and
Hugo Touvron and
Ishan Misra and
Herv{\'{e}} J{\'{e}}gou and
Julien Mairal and
Piotr Bojanowski and
Armand Joulin},
title = {Emerging Properties in Self-Supervised Vision Transformers},
journal = {CoRR},
volume = {abs/2104.14294},
year = {2021},
url = {https://arxiv.org/abs/2104.14294},
archivePrefix = {arXiv},
eprint = {2104.14294},
timestamp = {Tue, 04 May 2021 15:12:43 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2104-14294.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
数据统计
数据评估
本站Ai导航提供的facebook/dino-vitb8都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月9日 下午7:11收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。