Loading...
HF多模态

princeton-nlp/unsup-simcse-bert-base-uncased

Model Card for unsup-simcse...

标签:


Model Card for unsup-simcse-bert-base-uncased


Model Details


Model Description

More information needed

  • Developed by: Princeton NLP group
  • Shared by [Optional]: Hugging Face
  • Model type: Feature Extraction
  • Language(s) (NLP): More information needed
  • License: More information needed
  • Related Models:

    • Parent Model: BERT
  • Resources for more information:

    • GitHub Repo
    • Model Space
    • Associated Paper


Uses


Direct Use

This model can be used for the task of Feature Engineering.


Downstream Use [Optional]

More information needed


Out-of-Scope Use

The model should not be used to intentionally create hostile or alienating environments for people.


Bias, Risks, and Limitations

Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.


Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.


Training Details


Training Data

The model craters note in the Github Repository

We train unsupervised SimCSE on 106 randomly sampled sentences from English Wikipedia, and train supervised SimCSE on the combination of MNLI and SNLI datasets (314k).


Training Procedure


Preprocessing

More information needed


Speeds, Sizes, Times

More information needed


Evaluation


Testing Data, Factors & Metrics


Testing Data

The model craters note in the associated paper

Our evaluation code for sentence embeddings is based on a modified version of SentEval. It evaluates sentence embeddings on semantic textual similarity (STS) tasks and downstream transfer tasks. For STS tasks, our evaluation takes the “all” setting, and report Spearman’s correlation. See associated paper (Appendix B) for evaluation details.


Factors

More information needed


Metrics

More information needed


Results

More information needed


Model Examination

The model craters note in the associated paper

Uniformity and alignment.
We also observe that (1) though pre-trained embeddings have good alignment, their uniformity is poor (i.e., the embeddings are highly anisotropic); (2) post-processing methods like BERT-flow and BERT-whitening greatly improve uniformity but also suffer a degeneration in alignment; (3) unsupervised SimCSE effectively improves uniformity of pre-trained embeddings whereas keeping a good alignment;(4) incorporating supervised data in SimCSE further amends alignment.


Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: Nvidia 3090 GPUs with CUDA 11
  • Hours used: More information needed
  • Cloud Provider: More information needed
  • Compute Region: More information needed
  • Carbon Emitted: More information needed


Technical Specifications [optional]


Model Architecture and Objective

More information needed


Compute Infrastructure

More information needed


Hardware

More information needed


Software

More information needed


Citation

BibTeX:

@inproceedings{gao2021simcse,
  title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
  author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
  booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
  year={2021}
}


Glossary [optional]

More information needed


More Information [optional]

More information needed


Model Card Authors [optional]

Princeton NLP group in collaboration with Ezi Ozoani and the Hugging Face team


Model Card Contact

If you have any questions related to the code or the paper, feel free to email Tianyu (tianyug@cs.princeton.edu) and Xingcheng (yxc18@mails.tsinghua.edu.cn). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!


How to Get Started with the Model

Use the code below to get started with the model.

Click to expand
from Transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("princeton-nlp/unsup-simcse-bert-base-uncased")
model = AutoModel.from_pretrained("princeton-nlp/unsup-simcse-bert-base-uncased")

数据统计

数据评估

princeton-nlp/unsup-simcse-bert-base-uncased浏览人数已经达到420,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:princeton-nlp/unsup-simcse-bert-base-uncased的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找princeton-nlp/unsup-simcse-bert-base-uncased的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于princeton-nlp/unsup-simcse-bert-base-uncased特别声明

本站Ai导航提供的princeton-nlp/unsup-simcse-bert-base-uncased都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月9日 下午7:11收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...