LaBSE for English and Russian
This is a truncated version of sentence-Transformers/LaBSE, which is, in turn, a port of LaBSE by Google.
The current model has only English and Russian tokens left in the vocabulary.
Thus, the vocabulary is 10% of the original, and number of parameters in the whole model is 27% of the original, without any loss in the quality of English and Russian embeddings.
To get the sentence embeddings, you can use the following code:
import torch
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("cointegrated/LaBSE-en-ru")
model = AutoModel.from_pretrained("cointegrated/LaBSE-en-ru")
sentences = ["Hello World", "Привет Мир"]
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=64, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
embeddings = model_output.pooler_output
embeddings = torch.nn.functional.normalize(embeddings)
print(embeddings)
The model has been truncated in this notebook.
You can adapt it for other languages (like EIStakovskii/LaBSE-fr-de), models or datasets.
Reference:
Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Narveen Ari, Wei Wang. Language-agnostic BERT Sentence Embedding. July 2020
License: https://tfhub.dev/google/LaBSE/1
数据统计
数据评估
本站Ai导航提供的cointegrated/LaBSE-en-ru都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月9日 下午7:11收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。