IndoBERT Base Model (phase1 – uncased)
IndoBERT is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective.
All Pre-trained Models
Model | #params | Arch. | Training data |
---|---|---|---|
indobenchmark/indobert-base-p1 |
124.5M | Base | Indo4B (23.43 GB of text) |
indobenchmark/indobert-base-p2 |
124.5M | Base | Indo4B (23.43 GB of text) |
indobenchmark/indobert-large-p1 |
335.2M | Large | Indo4B (23.43 GB of text) |
indobenchmark/indobert-large-p2 |
335.2M | Large | Indo4B (23.43 GB of text) |
indobenchmark/indobert-lite-base-p1 |
11.7M | Base | Indo4B (23.43 GB of text) |
indobenchmark/indobert-lite-base-p2 |
11.7M | Base | Indo4B (23.43 GB of text) |
indobenchmark/indobert-lite-large-p1 |
17.7M | Large | Indo4B (23.43 GB of text) |
indobenchmark/indobert-lite-large-p2 |
17.7M | Large | Indo4B (23.43 GB of text) |
How to use
Load model and tokenizer
from transformers import BertTokenizer, AutoModel
tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-base-p1")
model = AutoModel.from_pretrained("indobenchmark/indobert-base-p1")
Extract contextual representation
x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1)
print(x, model(x)[0].sum())
Authors
IndoBERT was trained and evaluated by Bryan Wilie*, Karissa Vincentio*, Genta Indra Winata*, Samuel Cahyawijaya*, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, Ayu Purwarianti.
Citation
If you use our work, please cite:
@inproceedings{wilie2020indonlu,
title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding},
author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti},
booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing},
year={2020}
}
数据统计
数据评估
本站Ai导航提供的indobenchmark/indobert-base-p1都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月9日 下午7:12收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。