Loading...
HF多模态

indobenchmark/indobert-base-p1

IndoBERT Base Model (phase1...

标签:


IndoBERT Base Model (phase1 – uncased)

IndoBERT is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective.


All Pre-trained Models

Model #params Arch. Training data
indobenchmark/indobert-base-p1 124.5M Base Indo4B (23.43 GB of text)
indobenchmark/indobert-base-p2 124.5M Base Indo4B (23.43 GB of text)
indobenchmark/indobert-large-p1 335.2M Large Indo4B (23.43 GB of text)
indobenchmark/indobert-large-p2 335.2M Large Indo4B (23.43 GB of text)
indobenchmark/indobert-lite-base-p1 11.7M Base Indo4B (23.43 GB of text)
indobenchmark/indobert-lite-base-p2 11.7M Base Indo4B (23.43 GB of text)
indobenchmark/indobert-lite-large-p1 17.7M Large Indo4B (23.43 GB of text)
indobenchmark/indobert-lite-large-p2 17.7M Large Indo4B (23.43 GB of text)


How to use


Load model and tokenizer

from Transformers import BertTokenizer, AutoModel
tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-base-p1")
model = AutoModel.from_pretrained("indobenchmark/indobert-base-p1")


Extract contextual representation

x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1)
print(x, model(x)[0].sum())


Authors

IndoBERT was trained and evaluated by Bryan Wilie*, Karissa Vincentio*, Genta Indra Winata*, Samuel Cahyawijaya*, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, Ayu Purwarianti.


Citation

If you use our work, please cite:

@inproceedings{wilie2020indonlu,
  title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding},
  author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti},
  booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing},
  year={2020}
}

数据统计

数据评估

indobenchmark/indobert-base-p1浏览人数已经达到556,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:indobenchmark/indobert-base-p1的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找indobenchmark/indobert-base-p1的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于indobenchmark/indobert-base-p1特别声明

本站Ai导航提供的indobenchmark/indobert-base-p1都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月9日 下午7:12收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...