Loading...
HF多模态

facebook/bart-large

BART (large-sized model) ...

标签:


BART (large-sized model)

BART model pre-trained on English language. It was introduced in the paper BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension by Lewis et al. and first released in this repository.

Disclaimer: The team releasing BART did not write a model card for this model so this model card has been written by the Hugging Face team.


Model description

BART is a transformer encoder-decoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text.

BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering).


Intended uses & limitations

You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset. See the model hub to look for fine-tuned versions on a task that interests you.


How to use

Here is how to use this model in PyTorch:

from transformers import BartTokenizer, BartModel
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
model = BartModel.from_pretrained('facebook/bart-large')
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state


BibTeX entry and citation info

@article{DBLP:journals/corr/abs-1910-13461,
  author    = {Mike Lewis and
               Yinhan Liu and
               Naman Goyal and
               Marjan Ghazvininejad and
               Abdelrahman Mohamed and
               Omer Levy and
               Veselin Stoyanov and
               Luke Zettlemoyer},
  title     = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language
               Generation, Translation, and Comprehension},
  journal   = {CoRR},
  volume    = {abs/1910.13461},
  year      = {2019},
  url       = {http://arxiv.org/abs/1910.13461},
  eprinttype = {arXiv},
  eprint    = {1910.13461},
  timestamp = {Thu, 31 Oct 2019 14:02:26 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

数据统计

数据评估

facebook/bart-large浏览人数已经达到1,054,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:facebook/bart-large的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找facebook/bart-large的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于facebook/bart-large特别声明

本站Ai导航提供的facebook/bart-large都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月9日 下午7:13收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...