Loading...
HF多模态

facebook/dino-vits8

Vision Transformer (small-s...

标签:


Vision Transformer (small-sized model, patch size 8) trained using DINO

Vision Transformer (ViT) model trained using the DINO method. It was introduced in the paper Emerging Properties in Self-Supervised Vision Transformers by Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, Armand Joulin and first released in this repository.

Disclaimer: The team releasing DINO did not write a model card for this model so this model card has been written by the Hugging Face team.


Model description

The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-1k, at a resolution of 224×224 pixels.

Images are presented to the model as a sequence of fixed-size patches (resolution 8×8), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.

Note that this model does not include any fine-tuned heads.

By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.


Intended uses & limitations

You can use the raw model for image classification. See the model hub to look for
fine-tuned versions on a task that interests you.


How to use

Here is how to use this model:

from transformers import ViTFeatureExtractor, ViTModel
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = ViTFeatureExtractor.from_pretrained('facebook/dino-vits8')
model = ViTModel.from_pretrained('facebook/dino-vits8')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state


BibTeX entry and citation info

@article{DBLP:journals/corr/abs-2104-14294,
  author    = {Mathilde Caron and
               Hugo Touvron and
               Ishan Misra and
               Herv{\'{e}} J{\'{e}}gou and
               Julien Mairal and
               Piotr Bojanowski and
               Armand Joulin},
  title     = {Emerging Properties in Self-Supervised Vision Transformers},
  journal   = {CoRR},
  volume    = {abs/2104.14294},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.14294},
  archivePrefix = {arXiv},
  eprint    = {2104.14294},
  timestamp = {Tue, 04 May 2021 15:12:43 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-14294.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

数据统计

数据评估

facebook/dino-vits8浏览人数已经达到360,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:facebook/dino-vits8的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找facebook/dino-vits8的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于facebook/dino-vits8特别声明

本站Ai导航提供的facebook/dino-vits8都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月9日 下午7:13收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...