Loading...
HF多模态

allegro/herbert-large-cased

HerBERT HerBERT is a BERT...

标签:


HerBERT

HerBERT is a BERT-based Language Model trained on Polish corpora
using Masked Language Modelling (MLM) and Sentence Structural Objective (SSO) with dynamic masking of whole words. For more details, please refer to: HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish.

Model training and experiments were conducted with Transformers in version 2.9.


Corpus

HerBERT was trained on six different corpora available for Polish language:

Corpus Tokens Documents
CCNet Middle 3243M 7.9M
CCNet Head 2641M 7.0M
National Corpus of Polish 1357M 3.9M
Open Subtitles 1056M 1.1M
Wikipedia 260M 1.4M
Wolne Lektury 41M 5.5k


Tokenizer

The training dataset was tokenized into subwords using a character level byte-pair encoding (CharBPETokenizer) with
a vocabulary size of 50k tokens. The tokenizer itself was trained with a tokenizers library.

We kindly encourage you to use the Fast version of the tokenizer, namely HerbertTokenizerFast.


Usage

Example code:

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-large-cased")
model = AutoModel.from_pretrained("allegro/herbert-large-cased")
output = model(
    **tokenizer.batch_encode_plus(
        [
            (
                "A potem szedł środkiem drogi w kurzawie, bo zamiatał nogami, ślepy dziad prowadzony przez tłustego kundla na sznurku.",
                "A potem leciał od lasu chłopak z butelką, ale ten ujrzawszy księdza przy drodze okrążył go z dala i biegł na przełaj pól do karczmy."
            )
        ],
    padding='longest',
    add_special_tokens=True,
    return_tensors='pt'
    )
)


License

CC BY 4.0


Citation

If you use this model, please cite the following paper:

@inproceedings{mroczkowski-etal-2021-herbert,
    title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish",
    author = "Mroczkowski, Robert  and
      Rybak, Piotr  and
      Wr{\'o}blewska, Alina  and
      Gawlik, Ireneusz",
    booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
    month = apr,
    year = "2021",
    address = "Kiyv, Ukraine",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1",
    pages = "1--10",
}


Authors

The model was trained by Machine Learning Research Team at Allegro and Linguistic Engineering Group at Institute of Computer Science, Polish Academy of Sciences.

You can contact us at: klejbenchmark@allegro.pl

数据统计

数据评估

allegro/herbert-large-cased浏览人数已经达到435,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:allegro/herbert-large-cased的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找allegro/herbert-large-cased的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于allegro/herbert-large-cased特别声明

本站Ai导航提供的allegro/herbert-large-cased都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月9日 下午7:14收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...