Loading...

https://github.com/BM-K/Sentence-Embedding-is-all-you-need


Korean-Sentence-Embedding

? Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides environments where individuals can train models.


Quick tour

import torch
from Transformers import AutoModel, AutoTokenizer
def cal_score(a, b):
    if len(a.shape) == 1: a = a.unsqueeze(0)
    if len(b.shape) == 1: b = b.unsqueeze(0)
    a_norm = a / a.norm(dim=1)[:, None]
    b_norm = b / b.norm(dim=1)[:, None]
    return torch.mm(a_norm, b_norm.transpose(0, 1)) * 100
model = AutoModel.from_pretrained('BM-K/KoSimCSE-bert-multitask') 
AutoTokenizer.from_pretrained('BM-K/KoSimCSE-bert-multitask')
sentences = ['치타가 들판을 가로 질러 먹이를 쫓는다.',
             '치타 한 마리가 먹이 뒤에서 달리고 있다.',
             '원숭이 한 마리가 드럼을 연주한다.']
inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
embeddings, _ = model(**inputs, return_dict=False)
score01 = cal_score(embeddings[0][0], embeddings[1][0])
score02 = cal_score(embeddings[0][0], embeddings[2][0])


Performance

  • Semantic Textual Similarity test set results
Model AVG Cosine Pearson Cosine Spearman Euclidean Pearson Euclidean Spearman Manhattan Pearson Manhattan Spearman Dot Pearson Dot Spearman
KoSBERTSKT 77.40 78.81 78.47 77.68 77.78 77.71 77.83 75.75 75.22
KoSBERT 80.39 82.13 82.25 80.67 80.75 80.69 80.78 77.96 77.90
KoSRoBERTa 81.64 81.20 82.20 81.79 82.34 81.59 82.20 80.62 81.25
KoSentenceBART 77.14 79.71 78.74 78.42 78.02 78.40 78.00 74.24 72.15
KoSentenceT5 77.83 80.87 79.74 80.24 79.36 80.19 79.27 72.81 70.17
KoSimCSE-BERTSKT 81.32 82.12 82.56 81.84 81.63 81.99 81.74 79.55 79.19
KoSimCSE-BERT 83.37 83.22 83.58 83.24 83.60 83.15 83.54 83.13 83.49
KoSimCSE-RoBERTa 83.65 83.60 83.77 83.54 83.76 83.55 83.77 83.55 83.64
KoSimCSE-BERT-multitask 85.71 85.29 86.02 85.63 86.01 85.57 85.97 85.26 85.93
KoSimCSE-RoBERTa-multitask 85.77 85.08 86.12 85.84 86.12 85.83 86.12 85.03 85.99

数据统计

数据评估

BM-K/KoSimCSE-bert-multitask浏览人数已经达到956,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:BM-K/KoSimCSE-bert-multitask的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找BM-K/KoSimCSE-bert-multitask的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于BM-K/KoSimCSE-bert-multitask特别声明

本站Ai导航提供的BM-K/KoSimCSE-bert-multitask都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月9日 下午7:14收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...