Loading...
HF多模态

intfloat/simlm-base-msmarco-finetuned

SimLM: Pre-training with Re...

标签:


SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval

paper available at https://arxiv.org/pdf/2207.02578

code available at https://github.com/microsoft/unilm/tree/master/simlm


Paper abstract

In this paper, we propose SimLM (Similarity matching with Language Model pre-training), a simple yet effective pre-training method for dense passage retrieval.
It employs a simple bottleneck architecture that learns to compress the passage information into a dense vector through self-supervised pre-training.
We use a replaced language modeling objective, which is inspired by ELECTRA,
to improve the sample efficiency and reduce the mismatch of the input distribution between pre-training and fine-tuning.
SimLM only requires access to unlabeled corpus, and is more broadly applicable when there are no labeled data or queries.
We conduct experiments on several large-scale passage retrieval datasets, and show substantial improvements over strong baselines under various settings.
Remarkably, SimLM even outperforms multi-vector approaches such as ColBERTv2 which incurs significantly more storage cost.


Results on MS-MARCO passage ranking task

Model dev MRR@10 dev R@50 dev R@1k TREC DL 2019 nDCG@10 TREC DL 2020 nDCG@10
RocketQAv2 38.8 86.2 98.1
coCondenser 38.2 86.5 98.4 71.7 68.4
ColBERTv2 39.7 86.8 98.4
SimLM (this model) 41.1 87.8 98.7 71.4 69.7


Usage

Get embeddings from our fine-tuned model:

import torch
from transformers import AutoModel, AutoTokenizer, BatchEncoding, PreTrainedTokenizerFast
from transformers.modeling_outputs import BaseModelOutput
def l2_normalize(x: torch.Tensor):
    return torch.nn.functional.normalize(x, p=2, dim=-1)
def encode_query(tokenizer: PreTrainedTokenizerFast, query: str) -> BatchEncoding:
    return tokenizer(query,
                     max_length=32,
                     padding=True,
                     truncation=True,
                     return_tensors='pt')
def encode_passage(tokenizer: PreTrainedTokenizerFast, passage: str, title: str = '-') -> BatchEncoding:
    return tokenizer(title,
                     text_pair=passage,
                     max_length=144,
                     padding=True,
                     truncation=True,
                     return_tensors='pt')
tokenizer = AutoTokenizer.from_pretrained('intfloat/simlm-base-msmarco-finetuned')
model = AutoModel.from_pretrained('intfloat/simlm-base-msmarco-finetuned')
model.eval()
with torch.no_grad():
    query_batch_dict = encode_query(tokenizer, 'what is qa')
    outputs: BaseModelOutput = model(**query_batch_dict, return_dict=True)
    query_embedding = l2_normalize(outputs.last_hidden_state[0, 0, :])
    psg1 = 'Quality assurance (QA) is a process-centered approach to ensuring that a company or organization is providing the best possible products or services. It is related to quality control, which focuses on the end result, such as testing a sample of items from a batch after production.'
    psg1_batch_dict = encode_passage(tokenizer, psg1)
    outputs: BaseModelOutput = model(**psg1_batch_dict, return_dict=True)
    psg1_embedding = l2_normalize(outputs.last_hidden_state[0, 0, :])
    psg2 = 'The Super Bowl is typically four hours long. The game itself takes about three and a half hours, with a 30 minute halftime show built in.'
    psg2_batch_dict = encode_passage(tokenizer, psg2)
    outputs: BaseModelOutput = model(**psg2_batch_dict, return_dict=True)
    psg2_embedding = l2_normalize(outputs.last_hidden_state[0, 0, :])
    # Higher cosine similarity means they are more relevant
    print(query_embedding.dot(psg1_embedding), query_embedding.dot(psg2_embedding))


Citation

@article{Wang2022SimLMPW,
  title={SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval},
  author={Liang Wang and Nan Yang and Xiaolong Huang and Binxing Jiao and Linjun Yang and Daxin Jiang and Rangan Majumder and Furu Wei},
  journal={ArXiv},
  year={2022},
  volume={abs/2207.02578}
}

数据统计

数据评估

intfloat/simlm-base-msmarco-finetuned浏览人数已经达到931,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:intfloat/simlm-base-msmarco-finetuned的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找intfloat/simlm-base-msmarco-finetuned的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于intfloat/simlm-base-msmarco-finetuned特别声明

本站Ai导航提供的intfloat/simlm-base-msmarco-finetuned都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月9日 下午7:16收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...