Loading...
HF多模态

M-CLIP/M-BERT-Base-ViT-B

M-BERT Base ViT-B Github M...

标签:

M-BERT Base ViT-B

Github Model Card


Usage

To use this model along with the original CLIP vision encoder you need to download the code and additional linear weights from the Multilingual-CLIP Github.

Once this is done, you can load and use the model with the following code

from src import multilingual_clip
model = multilingual_clip.load_model('M-BERT-Base-ViT')
embeddings = model(['Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?'])
print(embeddings.shape)
# Yields: torch.Size([3, 640])


About

A BERT-base-multilingual tuned to match the embedding space for 69 languages, to the embedding space of the CLIP text encoder which accompanies the ViT-B/32 vision encoder.
A full list of the 100 languages used during pre-training can be found here, and a list of the 4069languages used during fine-tuning can be found in SupportedLanguages.md.

Training data pairs was generated by sampling 40k sentences for each language from the combined descriptions of GCC + MSCOCO + VizWiz, and translating them into the corresponding language.
All translation was done using the AWS translate service, the quality of these translations have currently not been analyzed, but one can assume the quality varies between the 69 languages.

数据统计

数据评估

M-CLIP/M-BERT-Base-ViT-B浏览人数已经达到487,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:M-CLIP/M-BERT-Base-ViT-B的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找M-CLIP/M-BERT-Base-ViT-B的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于M-CLIP/M-BERT-Base-ViT-B特别声明

本站Ai导航提供的M-CLIP/M-BERT-Base-ViT-B都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月9日 下午7:17收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...