HF计算机视觉
patrickvonplaten/wav2vec2_tiny_random
Test model
To test this model run the following code:
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC
import torchaudio
import torch
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2_tiny_random")
def load_audio(batch):
batch["samples"], _ = torchaudio.load(batch["file"])
return batch
ds = ds.map(load_audio)
input_values = torch.nn.utils.rnn.pad_sequence([torch.tensor(x[0]) for x in ds["samples"][:10]], batch_first=True)
# forward
logits = model(input_values).logits
pred_ids = torch.argmax(logits, dim=-1)
# dummy loss
dummy_labels = pred_ids.clone()
dummy_labels[dummy_labels == model.config.pad_token_id] = 1 # can't have CTC blank token in label
dummy_labels = dummy_labels[:, -(dummy_labels.shape[1] // 4):] # make sure labels are shorter to avoid "inf" loss (can still happen though...)
loss = model(input_values, labels=dummy_labels).loss
数据统计
数据评估
关于patrickvonplaten/wav2vec2_tiny_random特别声明
本站Ai导航提供的patrickvonplaten/wav2vec2_tiny_random都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月15日 下午3:10收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。
相关导航
暂无评论...