Loading...
HF计算机视觉

sayakpaul/glpn-nyu-finetuned-diode-221228-072509

glpn-nyu-finetuned-diode-22...

标签:


glpn-nyu-finetuned-diode-221228-072509

This model is a fine-tuned version of vinvino02/glpn-nyu on the diode-subset dataset.
It achieves the following results on the evaluation set:

  • Loss: 0.4012
  • Mae: 0.4030
  • Rmse: 0.6173
  • Abs Rel: 0.3487
  • Log Mae: 0.1574
  • Log Rmse: 0.2110
  • Delta1: 0.4308
  • Delta2: 0.6997
  • Delta3: 0.8249


Model description

More information needed


Intended uses & limitations

More information needed


Training and evaluation data

More information needed


Training procedure


Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 24
  • eval_batch_size: 48
  • seed: 2022
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • num_epochs: 50
  • mixed_precision_training: Native AMP


Training results

Training Loss Epoch Step Validation Loss Mae Rmse Abs Rel Log Mae Log Rmse Delta1 Delta2 Delta3
1.1571 1.0 72 0.6604 0.6233 0.8403 0.5125 0.3119 0.3691 0.1726 0.3423 0.4877
0.4895 2.0 144 0.4506 0.4460 0.6404 0.4241 0.1812 0.2299 0.3325 0.6053 0.7943
0.4709 3.0 216 0.4414 0.4370 0.6305 0.4243 0.1764 0.2253 0.3537 0.6145 0.7988
0.4436 4.0 288 0.4335 0.4324 0.6285 0.4045 0.1746 0.2245 0.3444 0.6506 0.8096
0.4656 5.0 360 0.4552 0.4515 0.6328 0.4614 0.1838 0.2307 0.3374 0.5762 0.7722
0.4482 6.0 432 0.4234 0.4166 0.6233 0.3805 0.1654 0.2179 0.4035 0.6623 0.8130
0.4099 7.0 504 0.4176 0.4185 0.6238 0.3676 0.1662 0.2150 0.3937 0.6589 0.8153
0.3987 8.0 576 0.4515 0.4431 0.6300 0.4497 0.1792 0.2283 0.3561 0.5906 0.7781
0.396 9.0 648 0.4235 0.4267 0.6347 0.3591 0.1716 0.2224 0.3934 0.6310 0.7963
0.3608 10.0 720 0.4312 0.4181 0.6227 0.4022 0.1666 0.2217 0.4014 0.6586 0.8173
0.3568 11.0 792 0.4322 0.4198 0.6183 0.4047 0.1674 0.2186 0.3870 0.6420 0.8071
0.3923 12.0 864 0.4225 0.4196 0.6294 0.3630 0.1668 0.2181 0.3910 0.6537 0.8151
0.3971 13.0 936 0.4086 0.4105 0.6219 0.3541 0.1614 0.2144 0.4234 0.6820 0.8144
0.372 14.0 1008 0.4127 0.4099 0.6172 0.3668 0.1612 0.2119 0.4046 0.6727 0.8260
0.3884 15.0 1080 0.4060 0.4074 0.6176 0.3528 0.1598 0.2119 0.4109 0.6925 0.8225
0.3616 16.0 1152 0.4078 0.4092 0.6198 0.3532 0.1615 0.2139 0.4162 0.6791 0.8186
0.3504 17.0 1224 0.4202 0.4320 0.6408 0.3613 0.1740 0.2261 0.3769 0.6301 0.7915
0.3823 18.0 1296 0.4328 0.4218 0.6182 0.4198 0.1684 0.2207 0.3916 0.6371 0.8113
0.3437 19.0 1368 0.4133 0.4138 0.6205 0.3638 0.1636 0.2162 0.3967 0.6761 0.8188
0.3739 20.0 1440 0.4040 0.4070 0.6187 0.3486 0.1594 0.2124 0.4214 0.6813 0.8214
0.3397 21.0 1512 0.4180 0.4300 0.6360 0.3601 0.1732 0.2239 0.3708 0.6362 0.8006
0.332 22.0 1584 0.4025 0.4050 0.6182 0.3505 0.1582 0.2114 0.4274 0.6909 0.8275
0.3552 23.0 1656 0.4120 0.4179 0.6305 0.3569 0.1650 0.2188 0.4002 0.6753 0.8102
0.3804 24.0 1728 0.4093 0.4111 0.6223 0.3594 0.1620 0.2152 0.4068 0.6851 0.8166
0.3519 25.0 1800 0.4039 0.4122 0.6237 0.3511 0.1621 0.2137 0.4109 0.6895 0.8171
0.3276 26.0 1872 0.4044 0.4117 0.6183 0.3533 0.1623 0.2127 0.3979 0.6824 0.8251
0.3167 27.0 1944 0.4091 0.4099 0.6189 0.3600 0.1613 0.2135 0.4069 0.6898 0.8218
0.3547 28.0 2016 0.4051 0.4055 0.6192 0.3521 0.1586 0.2119 0.4216 0.6921 0.8256
0.3297 29.0 2088 0.4025 0.4091 0.6215 0.3500 0.1605 0.2126 0.4155 0.6960 0.8224
0.3305 30.0 2160 0.4040 0.4045 0.6171 0.3507 0.1584 0.2120 0.4281 0.6938 0.8255
0.34 31.0 2232 0.4036 0.4082 0.6194 0.3492 0.1606 0.2132 0.4196 0.6851 0.8207
0.3507 32.0 2304 0.4057 0.4120 0.6245 0.3482 0.1619 0.2148 0.4195 0.6777 0.8172
0.3617 33.0 2376 0.4036 0.4098 0.6241 0.3477 0.1606 0.2141 0.4219 0.6871 0.8186
0.3268 34.0 2448 0.4015 0.4060 0.6197 0.3440 0.1593 0.2122 0.4326 0.6868 0.8211
0.3188 35.0 2520 0.4018 0.4032 0.6154 0.3504 0.1575 0.2107 0.4306 0.6952 0.8250
0.3286 36.0 2592 0.4046 0.4103 0.6237 0.3507 0.1611 0.2139 0.4179 0.6883 0.8173
0.3279 37.0 2664 0.3995 0.3993 0.6118 0.3460 0.1558 0.2091 0.4401 0.6979 0.8272
0.3439 38.0 2736 0.4052 0.4063 0.6196 0.3555 0.1590 0.2117 0.4207 0.6972 0.8256
0.3188 39.0 2808 0.4028 0.4028 0.6176 0.3482 0.1574 0.2112 0.4351 0.6916 0.8253
0.3334 40.0 2880 0.4059 0.4093 0.6218 0.3534 0.1607 0.2137 0.4201 0.6885 0.8217
0.3393 41.0 2952 0.4043 0.4048 0.6193 0.3492 0.1584 0.2118 0.4300 0.6906 0.8246
0.3099 42.0 3024 0.4029 0.4041 0.6161 0.3499 0.1583 0.2118 0.4274 0.6966 0.8239
0.3339 43.0 3096 0.4032 0.4056 0.6213 0.3515 0.1584 0.2122 0.4257 0.6995 0.8239
0.3086 44.0 3168 0.4024 0.4049 0.6173 0.3509 0.1586 0.2120 0.4243 0.6994 0.8227
0.3262 45.0 3240 0.4007 0.4035 0.6185 0.3467 0.1575 0.2112 0.4304 0.6994 0.8246
0.3265 46.0 3312 0.4017 0.4033 0.6170 0.3495 0.1574 0.2110 0.4271 0.7043 0.8247
0.3324 47.0 3384 0.4015 0.4056 0.6192 0.3471 0.1587 0.2119 0.4281 0.6944 0.8220
0.3159 48.0 3456 0.4012 0.4036 0.6156 0.3487 0.1581 0.2114 0.4279 0.6982 0.8234
0.3238 49.0 3528 0.4017 0.4024 0.6161 0.3499 0.1571 0.2106 0.4304 0.7008 0.8255
0.3112 50.0 3600 0.4012 0.4030 0.6173 0.3487 0.1574 0.2110 0.4308 0.6997 0.8249


Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2

数据统计

数据评估

sayakpaul/glpn-nyu-finetuned-diode-221228-072509浏览人数已经达到842,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:sayakpaul/glpn-nyu-finetuned-diode-221228-072509的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找sayakpaul/glpn-nyu-finetuned-diode-221228-072509的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于sayakpaul/glpn-nyu-finetuned-diode-221228-072509特别声明

本站Ai导航提供的sayakpaul/glpn-nyu-finetuned-diode-221228-072509都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月15日 下午3:10收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...