rohanrajpal/bert-base-multilingual-codemixed-cased-sentiment
BERT codemixed base model for hinglish (cased)
Model description
Input for the model: Any codemixed hinglish text
Output for the model: Sentiment. (0 – Negative, 1 – Neutral, 2 – Positive)
I took a bert-base-multilingual-cased model from Huggingface and finetuned it on SAIL 2017 dataset.
Performance of this model on the SAIL 2017 dataset
metric | score |
---|---|
acc | 0.588889 |
f1 | 0.582678 |
acc_and_f1 | 0.585783 |
precision | 0.586516 |
recall | 0.588889 |
Intended uses & limitations
How to use
Here is how to use this model to get the features of a given text in PyTorch:
# You can include sample code which will be formatted
from Transformers import BertTokenizer, BertModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("rohanrajpal/bert-base-codemixed-uncased-sentiment")
model = AutoModelForSequenceClassification.from_pretrained("rohanrajpal/bert-base-codemixed-uncased-sentiment")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('rohanrajpal/bert-base-codemixed-uncased-sentiment')
model = TFBertModel.from_pretrained("rohanrajpal/bert-base-codemixed-uncased-sentiment")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
Limitations and bias
Coming soon!
Training data
I trained on the SAIL 2017 dataset link on this pretrained model.
Training procedure
No preprocessing.
Eval results
BibTeX entry and citation info
@inproceedings{khanuja-etal-2020-gluecos,
title = "{GLUEC}o{S}: An Evaluation Benchmark for Code-Switched {NLP}",
author = "Khanuja, Simran and
Dandapat, Sandipan and
Srinivasan, Anirudh and
Sitaram, Sunayana and
Choudhury, Monojit",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.329",
pages = "3575--3585"
}
数据统计
数据评估
本站Ai导航提供的rohanrajpal/bert-base-multilingual-codemixed-cased-sentiment都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月15日 下午3:14收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。