Loading...
Hugging Face--有趣的Hugging Face模型HF自然语言处理

rohanrajpal/bert-base-multilingual-codemixed-cased-sentiment


BERT codemixed base model for hinglish (cased)


Model description

Input for the model: Any codemixed hinglish text
Output for the model: Sentiment. (0 – Negative, 1 – Neutral, 2 – Positive)

I took a bert-base-multilingual-cased model from Huggingface and finetuned it on SAIL 2017 dataset.

Performance of this model on the SAIL 2017 dataset

metric score
acc 0.588889
f1 0.582678
acc_and_f1 0.585783
precision 0.586516
recall 0.588889


Intended uses & limitations


How to use

Here is how to use this model to get the features of a given text in PyTorch:

# You can include sample code which will be formatted
from Transformers import BertTokenizer, BertModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("rohanrajpal/bert-base-codemixed-uncased-sentiment")
model = AutoModelForSequenceClassification.from_pretrained("rohanrajpal/bert-base-codemixed-uncased-sentiment")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

and in TensorFlow:

from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('rohanrajpal/bert-base-codemixed-uncased-sentiment')
model = TFBertModel.from_pretrained("rohanrajpal/bert-base-codemixed-uncased-sentiment")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)


Limitations and bias

Coming soon!


Training data

I trained on the SAIL 2017 dataset link on this pretrained model.


Training procedure

No preprocessing.


Eval results


BibTeX entry and citation info

@inproceedings{khanuja-etal-2020-gluecos,
    title = "{GLUEC}o{S}: An Evaluation Benchmark for Code-Switched {NLP}",
    author = "Khanuja, Simran  and
      Dandapat, Sandipan  and
      Srinivasan, Anirudh  and
      Sitaram, Sunayana  and
      Choudhury, Monojit",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.329",
    pages = "3575--3585"
}

数据统计

数据评估

rohanrajpal/bert-base-multilingual-codemixed-cased-sentiment浏览人数已经达到825,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:rohanrajpal/bert-base-multilingual-codemixed-cased-sentiment的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找rohanrajpal/bert-base-multilingual-codemixed-cased-sentiment的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于rohanrajpal/bert-base-multilingual-codemixed-cased-sentiment特别声明

本站Ai导航提供的rohanrajpal/bert-base-multilingual-codemixed-cased-sentiment都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月15日 下午3:14收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...