Loading...
HF自然语言处理

siebert/sentiment-roberta-large-english


SiEBERT – English-Language Sentiment Classification


Overview

This model (“SiEBERT”, prefix for “Sentiment in English”) is a fine-tuned checkpoint of RoBERTa-large (Liu et al. 2019). It enables reliable binary sentiment analysis for various types of English-language text. For each instance, it predicts either positive (1) or negative (0) sentiment. The model was fine-tuned and evaluated on 15 data sets from diverse text sources to enhance generalization across different types of texts (reviews, tweets, etc.). Consequently, it outperforms models trained on only one type of text (e.g., movie reviews from the popular SST-2 benchmark) when used on new data as shown below.


Predictions on a data set

If you want to predict sentiment for your own data, we provide an example script via Google Colab. You can load your data to a Google Drive and run the script for free on a Colab GPU. Set-up only takes a few minutes. We suggest that you manually label a subset of your data to evaluate performance for your use case. For performance benchmark values across various sentiment analysis contexts, please refer to our paper (Hartmann et al. 2022).

Open In Colab


Use in a Hugging Face pipeline

The easiest way to use the model for single predictions is Hugging Face’s sentiment analysis pipeline, which only needs a couple lines of code as shown in the following example:

from Transformers import pipeline
sentiment_analysis = pipeline("sentiment-analysis",model="siebert/sentiment-roberta-large-english")
print(sentiment_analysis("I love this!"))

Open In Colab


Use for further fine-tuning

The model can also be used as a starting point for further fine-tuning of RoBERTa on your specific data. Please refer to Hugging Face’s documentation for further details and example code.


Performance

To evaluate the performance of our general-purpose sentiment analysis model, we set aside an evaluation set from each data set, which was not used for training. On average, our model outperforms a DistilBERT-based model (which is solely fine-tuned on the popular SST-2 data set) by more than 15 percentage points (78.1 vs. 93.2 percent, see table below). As a robustness check, we evaluate the model in a leave-one-out manner (training on 14 data sets, evaluating on the one left out), which decreases model performance by only about 3 percentage points on average and underscores its generalizability. Model performance is given as evaluation set accuracy in percent.

Dataset DistilBERT SST-2 This model
McAuley and Leskovec (2013) (Reviews) 84.7 98.0
McAuley and Leskovec (2013) (Review Titles) 65.5 87.0
Yelp Academic Dataset 84.8 96.5
Maas et al. (2011) 80.6 96.0
Kaggle 87.2 96.0
Pang and Lee (2005) 89.7 91.0
Nakov et al. (2013) 70.1 88.5
Shamma (2009) 76.0 87.0
Blitzer et al. (2007) (Books) 83.0 92.5
Blitzer et al. (2007) (DVDs) 84.5 92.5
Blitzer et al. (2007) (Electronics) 74.5 95.0
Blitzer et al. (2007) (Kitchen devices) 80.0 98.5
Pang et al. (2002) 73.5 95.5
Speriosu et al. (2011) 71.5 85.5
Hartmann et al. (2019) 65.5 98.0
Average 78.1 93.2


Fine-tuning hyperparameters

  • learning_rate = 2e-5
  • num_train_epochs = 3.0
  • warmump_steps = 500
  • weight_decay = 0.01

Other values were left at their defaults as listed here.


Citation and contact

Please cite this paper (Published in the IJRM) when you use our model. Feel free to reach out to christian.siebert@uni-hamburg.de with any questions or feedback you may have.


@article{hartmann2023,
title = {More than a Feeling: Accuracy and Application of Sentiment Analysis},
journal = {International Journal of Research in Marketing},
volume = {40},
number = {1},
pages = {75-87},
year = {2023},
doi = {https://doi.org/10.1016/j.ijresmar.2022.05.005},
url = {https://www.sciencedirect.com/science/article/pii/S0167811622000477},
author = {Jochen Hartmann and Mark Heitmann and Christian Siebert and Christina Schamp},
}

数据统计

数据评估

siebert/sentiment-roberta-large-english浏览人数已经达到797,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:siebert/sentiment-roberta-large-english的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找siebert/sentiment-roberta-large-english的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于siebert/sentiment-roberta-large-english特别声明

本站Ai导航提供的siebert/sentiment-roberta-large-english都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月15日 下午3:15收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...