Loading...
HF自然语言处理

j-hartmann/emotion-english-distilroberta-base


Emotion English DistilRoBERTa-base


Description ℹ

With this model, you can classify emotions in English text data. The model was trained on 6 diverse datasets (see Appendix below) and predicts Ekman’s 6 basic emotions, plus a neutral class:

  1. anger ?
  2. disgust ?
  3. fear ?
  4. joy ?
  5. neutral ?
  6. sadness ?
  7. surprise ?

The model is a fine-tuned checkpoint of DistilRoBERTa-base. For a ‘non-distilled’ emotion model, please refer to the model card of the RoBERTa-large version.


Application ?

a) Run emotion model with 3 lines of code on single text example using Hugging Face’s pipeline command on Google Colab:

Open In Colab

from Transformers import pipeline
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
classifier("I love this!")
Output:
[[{'label': 'anger', 'score': 0.004419783595949411},
  {'label': 'disgust', 'score': 0.0016119900392368436},
  {'label': 'fear', 'score': 0.0004138521908316761},
  {'label': 'joy', 'score': 0.9771687984466553},
  {'label': 'neutral', 'score': 0.005764586851000786},
  {'label': 'sadness', 'score': 0.002092392183840275},
  {'label': 'surprise', 'score': 0.008528684265911579}]]

b) Run emotion model on multiple examples and full datasets (e.g., .csv files) on Google Colab:

Open In Colab


Contact ?

Please reach out to jochen.hartmann@tum.de if you have any questions or feedback.

Thanks to Samuel Domdey and chrsiebert for their support in making this model available.


Reference ✅

For attribution, please cite the following reference if you use this model. A working paper will be available soon.

Jochen Hartmann, "Emotion English DistilRoBERTa-base". https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/, 2022.

BibTex citation:

@misc{hartmann2022emotionenglish,
  author={Hartmann, Jochen},
  title={Emotion English DistilRoBERTa-base},
  year={2022},
  howpublished = {\url{https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/}},
}


Appendix ?

Please find an overview of the datasets used for training below. All datasets contain English text. The table summarizes which emotions are available in each of the datasets. The datasets represent a diverse collection of text types. Specifically, they contain emotion labels for texts from Twitter, Reddit, student self-reports, and utterances from TV dialogues. As MELD (Multimodal EmotionLines Dataset) extends the popular EmotionLines dataset, EmotionLines itself is not included here.

Name anger disgust fear joy neutral sadness surprise
Crowdflower (2016) Yes Yes Yes Yes Yes
Emotion Dataset, Elvis et al. (2018) Yes Yes Yes Yes Yes
GoEmotions, Demszky et al. (2020) Yes Yes Yes Yes Yes Yes Yes
ISEAR, Vikash (2018) Yes Yes Yes Yes Yes
MELD, Poria et al. (2019) Yes Yes Yes Yes Yes Yes Yes
SemEval-2018, EI-reg, Mohammad et al. (2018) Yes Yes Yes Yes

The model is trained on a balanced subset from the datasets listed above (2,811 observations per emotion, i.e., nearly 20k observations in total). 80% of this balanced subset is used for training and 20% for evaluation. The evaluation accuracy is 66% (vs. the random-chance baseline of 1/7 = 14%).


Scientific Applications ?

Below you can find a list of papers using “Emotion English DistilRoBERTa-base”. If you would like your paper to be added to the list, please send me an email.

  • Butt, S., Sharma, S., Sharma, R., Sidorov, G., & Gelbukh, A. (2022). What goes on inside rumour and non-rumour tweets and their reactions: A Psycholinguistic Analyses. Computers in Human Behavior, 107345.
  • Kuang, Z., Zong, S., Zhang, J., Chen, J., & Liu, H. (2022). Music-to-Text Synaesthesia: Generating Descriptive Text from Music Recordings. arXiv preprint arXiv:2210.00434.
  • Rozado, D., Hughes, R., & Halberstadt, J. (2022). Longitudinal analysis of sentiment and emotion in news media headlines using automated labelling with Transformer language models. Plos one, 17(10), e0276367.

数据统计

数据评估

j-hartmann/emotion-english-distilroberta-base浏览人数已经达到1,019,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:j-hartmann/emotion-english-distilroberta-base的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找j-hartmann/emotion-english-distilroberta-base的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于j-hartmann/emotion-english-distilroberta-base特别声明

本站Ai导航提供的j-hartmann/emotion-english-distilroberta-base都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月15日 下午3:15收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...