Loading...
HF自然语言处理

cardiffnlp/twitter-roberta-base-sentiment-latest


Twitter-roBERTa-base for Sentiment Analysis – UPDATED (2022)

This is a RoBERTa-base model trained on ~124M tweets from January 2018 to December 2021, and finetuned for sentiment analysis with the TweetEval benchmark.
The original Twitter-based RoBERTa model can be found here and the original reference paper is TweetEval. This model is suitable for English.

  • Reference Paper: TimeLMs paper.
  • Git Repo: TimeLMs official repository.

Labels:
0 -> Negative;
1 -> Neutral;
2 -> Positive

This sentiment analysis model has been integrated into TweetNLP. You can access the demo here.


Example Pipeline

from transformers import pipeline
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("Covid cases are increasing fast!")
[{'label': 'Negative', 'score': 0.7236}]


Full classification example

from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
from scipy.special import softmax
# Preprocess text (username and link placeholders)
def preprocess(text):
    new_text = []
    for t in text.split(" "):
        t = '@user' if t.startswith('@') and len(t) > 1 else t
        t = 'http' if t.startswith('http') else t
        new_text.append(t)
    return " ".join(new_text)
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
config = AutoConfig.from_pretrained(MODEL)
# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
#model.save_pretrained(MODEL)
text = "Covid cases are increasing fast!"
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
# # TF
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
# model.save_pretrained(MODEL)
# text = "Covid cases are increasing fast!"
# encoded_input = tokenizer(text, return_tensors='tf')
# output = model(encoded_input)
# scores = output[0][0].numpy()
# scores = softmax(scores)
# Print labels and scores
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
    l = config.id2label[ranking[i]]
    s = scores[ranking[i]]
    print(f"{i+1}) {l} {np.round(float(s), 4)}")

Output:

1) Negative 0.7236
2) Neutral 0.2287
3) Positive 0.0477

数据统计

数据评估

cardiffnlp/twitter-roberta-base-sentiment-latest浏览人数已经达到723,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:cardiffnlp/twitter-roberta-base-sentiment-latest的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找cardiffnlp/twitter-roberta-base-sentiment-latest的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于cardiffnlp/twitter-roberta-base-sentiment-latest特别声明

本站Ai导航提供的cardiffnlp/twitter-roberta-base-sentiment-latest都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月15日 下午3:15收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...