Loading...


ESPnet JETS Text-to-Speech (TTS) Model for ONNX

imdanboy/jets exported to ONNX. This model is an ONNX export using the espnet_onnx library.


Usage with txtai

txtai has a built in Text to Speech (TTS) pipeline that makes using this model easy.

import soundfile as sf
from txtai.pipeline import Text-to-Speech
# Build pipeline
tts = TextToSpeech("NeuML/ljspeech-jets-onnx")
# Generate speech
speech = tts("Say something here")
# Write to file
sf.write("out.wav", speech, 22050)


Usage with ONNX

This model can also be run directly with ONNX provided the input text is tokenized. Tokenization can be done with ttstokenizer.

Note that the txtai pipeline has additional functionality such as batching large inputs together that would need to be duplicated with this method.

import onnxruntime
import soundfile as sf
import yaml
from ttstokenizer import TTSTokenizer
# This example assumes the files have been downloaded locally
with open("ljspeech-jets-onnx/config.yaml", "r", encoding="utf-8") as f:
    config = yaml.safe_load(f)
# Create model
model = onnxruntime.InferenceSession(
    "ljspeech-jets-onnx/model.onnx",
    providers=["CPUExecutionProvider"]
)
# Create tokenizer
tokenizer = TTSTokenizer(config["token"]["list"])
# Tokenize inputs
inputs = tokenizer("Say something here")
# Generate speech
outputs = model.run(None, {"text": inputs})
# Write to file
sf.write("out.wav", outputs[0], 22050)


How to export

More information on how to export ESPnet models to ONNX can be found here.

数据统计

数据评估

NeuML/ljspeech-jets-onnx浏览人数已经达到810,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:NeuML/ljspeech-jets-onnx的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找NeuML/ljspeech-jets-onnx的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于NeuML/ljspeech-jets-onnx特别声明

本站Ai导航提供的NeuML/ljspeech-jets-onnx都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月15日 下午3:17收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...