Loading...


Model Description


Keras Implementation of Imbalanced classification: credit card fraud detection

This repo contains the trained model of Imbalanced classification: credit card fraud detection.
The full credit goes to: fchollet


Intended uses & limitations

  • The trained model is used to detect of a specific transaction is fraudulent or not.


Training dataset

  • Credit Card Fraud Detection
  • Due to the high imbalance of the target feature (417 frauds or 0.18% of total 284,807 samples), training weight was applied to reduce the False Negatives to the lowest level as possible.


Training procedure


Training hyperparameter

The following hyperparameters were used during training:

  • optimizer: ‘Adam’
  • learning_rate: 0.01
  • loss: ‘binary_crossentropy’
  • epochs: 30
  • batch_size: 2048
  • beta_1: 0.9
  • beta_2: 0.999
  • epsilon: 1e-07
  • training_precision: float32


Training Metrics

Epochs Train Loss Train Fn Train Fp Train Tn Train Tp Train Precision Train Recall Validation Loss Validation Fn Validation Fp Validation Tn Validation Tp Validation Precision Validation Recall
1 0.0 14.0 6202.0 221227.0 403.0 0.061 0.966 0.043 9.0 622.0 56264.0 66.0 0.096 0.88
2 0.0 3.0 3514.0 223915.0 414.0 0.105 0.993 0.025 10.0 528.0 56358.0 65.0 0.11 0.867
3 0.0 2.0 2419.0 225010.0 415.0 0.146 0.995 0.014 11.0 283.0 56603.0 64.0 0.184 0.853
4 0.0 3.0 2482.0 224947.0 414.0 0.143 0.993 0.027 11.0 340.0 56546.0 64.0 0.158 0.853
5 0.0 2.0 2295.0 225134.0 415.0 0.153 0.995 0.034 11.0 245.0 56641.0 64.0 0.207 0.853
6 0.0 3.0 2239.0 225190.0 414.0 0.156 0.993 0.037 10.0 495.0 56391.0 65.0 0.116 0.867
7 0.0 2.0 3095.0 224334.0 415.0 0.118 0.995 0.011 11.0 194.0 56692.0 64.0 0.248 0.853
8 0.0 4.0 1844.0 225585.0 413.0 0.183 0.99 0.035 9.0 429.0 56457.0 66.0 0.133 0.88
9 0.0 1.0 2119.0 225310.0 416.0 0.164 0.998 0.012 11.0 167.0 56719.0 64.0 0.277 0.853
10 0.0 3.0 1539.0 225890.0 414.0 0.212 0.993 0.013 13.0 144.0 56742.0 62.0 0.301 0.827
11 0.0 6.0 3444.0 223985.0 411.0 0.107 0.986 0.039 11.0 394.0 56492.0 64.0 0.14 0.853
12 0.0 4.0 3818.0 223611.0 413.0 0.098 0.99 0.03 9.0 523.0 56363.0 66.0 0.112 0.88
13 0.0 7.0 4482.0 222947.0 410.0 0.084 0.983 0.059 6.0 1364.0 55522.0 69.0 0.048 0.92
14 0.0 2.0 3064.0 224365.0 415.0 0.119 0.995 0.033 9.0 699.0 56187.0 66.0 0.086 0.88
15 0.0 4.0 3563.0 223866.0 413.0 0.104 0.99 0.066 8.0 956.0 55930.0 67.0 0.065 0.893
16 0.0 4.0 2536.0 224893.0 413.0 0.14 0.99 0.016 9.0 339.0 56547.0 66.0 0.163 0.88
17 0.0 6.0 2594.0 224835.0 411.0 0.137 0.986 0.049 8.0 821.0 56065.0 67.0 0.075 0.893
18 0.0 1.0 1911.0 225518.0 416.0 0.179 0.998 0.013 8.0 215.0 56671.0 67.0 0.238 0.893
19 0.0 2.0 1457.0 225972.0 415.0 0.222 0.995 0.018 7.0 342.0 56544.0 68.0 0.166 0.907
20 0.0 0.0 1132.0 226297.0 417.0 0.269 1.0 0.011 10.0 172.0 56714.0 65.0 0.274 0.867
21 0.0 1.0 840.0 226589.0 416.0 0.331 0.998 0.008 11.0 100.0 56786.0 64.0 0.39 0.853
22 0.0 1.0 2124.0 225305.0 416.0 0.164 0.998 0.075 10.0 350.0 56536.0 65.0 0.157 0.867
23 0.0 2.0 1457.0 225972.0 415.0 0.222 0.995 0.03 11.0 242.0 56644.0 64.0 0.209 0.853
24 0.0 5.0 2761.0 224668.0 412.0 0.13 0.988 0.297 6.0 2741.0 54145.0 69.0 0.025 0.92
25 0.0 3.0 2484.0 224945.0 414.0 0.143 0.993 0.025 10.0 199.0 56687.0 65.0 0.246 0.867
26 0.0 4.0 4867.0 222562.0 413.0 0.078 0.99 0.021 18.0 33.0 56853.0 57.0 0.633 0.76
27 0.0 8.0 4230.0 223199.0 409.0 0.088 0.981 0.053 9.0 1541.0 55345.0 66.0 0.041 0.88
28 0.0 9.0 5305.0 222124.0 408.0 0.071 0.978 0.026 9.0 398.0 56488.0 66.0 0.142 0.88
29 0.0 5.0 4846.0 222583.0 412.0 0.078 0.988 0.242 6.0 7883.0 49003.0 69.0 0.009 0.92
30 0.0 5.0 5193.0 222236.0 412.0 0.074 0.988 0.026 7.0 449.0 56437.0 68.0 0.132 0.907


Model Plot

View Model Plot

Model Image

数据统计

数据评估

keras-io/imbalanced_classification浏览人数已经达到833,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:keras-io/imbalanced_classification的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找keras-io/imbalanced_classification的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于keras-io/imbalanced_classification特别声明

本站Ai导航提供的keras-io/imbalanced_classification都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月15日 下午3:20收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...