Loading...
HF表格

keras-io/tab_transformer

Keras Implementation of Str...

标签:


Keras Implementation of Structured data learning with Tabtransformer

This repo contains the trained model of Structured data learning with TabTransformer.
The full credit goes to: Khalid Salama

Spaces Link:


Model summary:

  • The trained model uses self-attention based Transformers structure following by multiple feed forward layers in order to serve supervised and semi-supervised learning.
  • The model’s inputs can contain both numerical and categorical features.
  • All the categorical features will be encoded into embedding vector with the same number of embedding dimensions, before adding (point-wise) with each other and feeding into a stack of Transformer blocks.
  • The contextual embeddings of the categorical features after the final Transformer layer, are concatenated with the input numerical features, and fed into a final MLP block.
  • A SoftMax function is applied at the end of the model.


Intended uses & limitations:

  • This model can be used for both supervised and semi-supervised tasks on tabular data.


Training and evaluation data:

  • This model was trained using the United States Census Income Dataset provided by the UC Irvine Machine Learning Repository. The task of the dataset is to predict whether a person is likely to be making over USD 50,000 a year (binary classification).
  • The dataset consists of 14 input features: 5 numerical features and 9 categorical features.


Training procedure


Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: ‘AdamW’
  • learning_rate: 0.001
  • weight decay: 1e-04
  • loss: ‘sparse_categorical_crossentropy’
  • beta_1: 0.9
  • beta_2: 0.999
  • epsilon: 1e-07
  • epochs: 50
  • batch_size: 16
  • training_precision: float32


Training Metrics

Model history needed


Model Plot

View Model Plot

Model Image

数据统计

数据评估

keras-io/tab_transformer浏览人数已经达到707,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:keras-io/tab_transformer的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找keras-io/tab_transformer的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于keras-io/tab_transformer特别声明

本站Ai导航提供的keras-io/tab_transformer都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月15日 下午3:20收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...