Loading...
HF表格

mindwrapped/collaborative-filtering-movielens-copy

Model description This re...

标签:


Model description

This repo contains the model and the notebook on how to build and train a Keras model for Collaborative Filtering for Movie Recommendations.

Full credits to Siddhartha Banerjee.


Intended uses & limitations

Based on a user and movies they have rated highly in the past, this model outputs the predicted rating a user would give to a movie they haven’t seen yet (between 0-1). This information can be used to find out the top recommended movies for this user.


Training and evaluation data

The dataset consists of user’s ratings on specific movies. It also consists of the movie’s specific genres.


Training procedure

The model was trained for 5 epochs with a batch size of 64.


Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {‘name’: ‘Adam’, ‘learning_rate’: 0.001, ‘decay’: 0.0, ‘beta_1’: 0.9, ‘beta_2’: 0.999, ‘epsilon’: 1e-07, ‘amsgrad’: False}
  • training_precision: float32


Training Metrics

Epochs Train Loss Validation Loss
1 0.637 0.619
2 0.614 0.616
3 0.609 0.611
4 0.608 0.61
5 0.608 0.609


Model Plot

View Model Plot

Model Image

数据统计

数据评估

mindwrapped/collaborative-filtering-movielens-copy浏览人数已经达到662,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:mindwrapped/collaborative-filtering-movielens-copy的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找mindwrapped/collaborative-filtering-movielens-copy的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于mindwrapped/collaborative-filtering-movielens-copy特别声明

本站Ai导航提供的mindwrapped/collaborative-filtering-movielens-copy都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月15日 下午3:20收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...