Loading...
HF表格

matth/flowformer

Flowformer Automatic dete...

标签:


Flowformer

Automatic detection of blast cells in ALL data using Transformers.

Official implementation of our work: “Automated Identification of Cell Populations in Flow Cytometry Data with Transformers”
by Matthias Wödlinger, Michael Reiter, Lisa Weijler, Margarita Maurer-Granofszky, Angela Schumich, Elisa O Sajaroff, Stefanie Groeneveld-Krentz, Jorge G Rossi, Leonid Karawajew, Richard Ratei and Michael Dworzak


Load the model

Load the pretrained model from huggingface

from transformers import AutoModel
flowformer = AutoModel.from_pretrained("matth/flowformer", trust_remote_code=True)

trust_remote_code=True is necessary because the model code uses a custom architecture.


Usage

The model expects as input a PyTorch tensor x with shape batch_size x num_cells x num_markers.
The pretrained model is trained with the the markers: TIME, FSC-A, FSC-W, SSC-A, CD20, CD10, CD45, CD34, CD19, CD38, SY41. If you use different markers (or a different ordering of markers), you need to specify this by setting the markers kwarg in the model forward pass:

output = flowformer(x, markers=["Marker1", "Marker2", "Marker3"])

For more information about model usage as well as hands-on examples check out this demo notebook from my colleague Florian Kowarsch: https://github.com/CaRniFeXeR/python4FCM_Examples/blob/main/hyperflow2023.ipynb


Citation

If you use this project please consider citing our work

@article{wodlinger2022automated,
  title={Automated identification of cell populations in flow cytometry data with transformers},
  author={Wödlinger, Matthias and Reiter, Michael and Weijler, Lisa and Maurer-Granofszky, Margarita and Schumich, Angela and Sajaroff, Elisa O and Groeneveld-Krentz, Stefanie and Rossi, Jorge G and Karawajew, Leonid and Ratei, Richard and others},
  journal={Computers in Biology and Medicine},
  volume={144},
  pages={105314},
  year={2022},
  publisher={Elsevier}
}


license: cc-by-nc-nd-4.0

数据统计

数据评估

matth/flowformer浏览人数已经达到825,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:matth/flowformer的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找matth/flowformer的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于matth/flowformer特别声明

本站Ai导航提供的matth/flowformer都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月15日 下午3:21收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...